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Abstract

Eco-evolutionary dynamics result when interacting biological forces simultaneously produce

demographic and genetic population responses. Eco-evolutionary simulators traditionally

manage complexity by minimizing the influence of spatial pattern on process. However,

such simplifications can limit their utility in real-world applications. We present a novel simu-

lation modeling approach for investigating eco-evolutionary dynamics, centered on the driv-

ing role of landscape pattern. Our spatially-explicit, individual-based mechanistic simulation

approach overcomes existing methodological challenges, generates new insights, and

paves the way for future investigations in four focal disciplines: Landscape Genetics, Popu-

lation Genetics, Conservation Biology, and Evolutionary Ecology. We developed a simple

individual-based model to illustrate how spatial structure drives eco-evo dynamics. By mak-

ing minor changes to our landscape’s structure, we simulated continuous, isolated, and

semi-connected landscapes, and simultaneously tested several classical assumptions of

the focal disciplines. Our results exhibit expected patterns of isolation, drift, and extinction.

By imposing landscape change on otherwise functionally-static eco-evolutionary models,

we altered key emergent properties such as gene-flow and adaptive selection. We observed

demo-genetic responses to these landscape manipulations, including changes in population

size, probability of extinction, and allele frequencies. Our model also demonstrated how

demo-genetic traits, including generation time and migration rate, can arise from a mecha-

nistic model, rather than being specified a priori. We identify simplifying assumptions com-

mon to four focal disciplines, and illustrate how new insights might be developed in eco-

evolutionary theory and applications by better linking biological processes to landscape pat-

terns that we know influence them, but that have understandably been left out of many past

modeling studies.

Introduction

Eco-evolutionary dynamics are shaped by spatial patterns and mediated by movement. The

influence of spatial pattern on eco-evolutionary (hereafter “eco-evo”) dynamics spans spatio-
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temporal scales and scientific disciplines, from cancer development within populations of

somatic cells [1] to ecosystem responses to climate change (e.g., [2, 3]). With advances in

molecular genetics, the time scales between evolutionary and ecological forces have been

shown to be sufficiently coincident [4] and feedbacks from rapid-evolution impinging on eco-

logical processes have been directly observed in an increasing number of natural systems [5–

11]. For example, evolutionary geneticists follow the evolution of heritable traits responding to

spatially heterogeneous selection pressures, population geneticists examine changes in allele

frequencies influenced by spatially-restricted gene-flow, phylogeographers investigate coales-

cent timing across glaciations, and conservation biologists explore links between genetic diver-

sity and resilience in spatially isolated populations. Despite the inherently spatial nature of

these processes, the dynamics of landscape structure have proven difficult to incorporate into

predictive models; though, for some exceptions see [12, 13]. Nevertheless, landscape dynamics

may be critical for understanding reciprocal feedbacks between ecology and evolution [14],

and for informing management applications [15].

Here, we illustrate how spatial structure drives eco-evo dynamics within four focal disci-

plines: Landscape Genetics, Population Genetics, Conservation Biology, and Evolutionary

Ecology. We employ computer simulations to illustrate these dynamics using a novel modeling

environment called HexSim [16] in which both biological forces and observable demographic

and genetic responses emerge mechanistically from changes to landscape structure. HexSim

life history processes are directly linked to static or dynamic landscape maps, and multiple spa-

tial drivers can simultaneously influence different parts of the same simulation. Further, move-

ment responses to landscape structure are not constrained by a reliance on resistance surfaces,

patch-mosaic structures, stepping stones, or the use of graph-theoretic networks–all simplifica-

tions that are frequently employed to speed model development, but at a cost to biological real-

ism. Lastly, HexSim eco-evo processes are mechanistically connected using a highly flexible

system of demographic and genetic (hereafter “demo-genetic”) life history traits. While more

than 60 publications have resulted from HexSim-based studies (www.hexsim.net), adoption

and application of the model’s genetics toolkit has lagged. Below we describe how increasing

attention to spatial and demographic details, and the further integration of ecological and evo-

lutionary processes, will likely contribute to the focal disciplines mentioned above. Both the

HexSim application and the simulation models described here are available at www.hexsim.

net.

Landscape genetics

This relatively new field endeavors to describe how landscape pattern influences gene-flow. A

standard approach is to compare inter-individual genetic distance to metrics of landscape

structure, often quantified as a cost-distance across a resistance surface. Available landscape

genetics modeling platforms have had limited spatial, demographic, or behavioral sophistica-

tion [17], though some such constraints are being actively addressed by leaders in the field

(e.g., [18]). Models that are unable to incorporate mechanisms underlying species-landscape

interactions have a limited ability to simulate complex movements and resulting gene-flow.

Additionally, most platforms cannot simultaneously simulate multiple interacting eco-evo

drivers of gene-flow, such as local adaptation along with source-sink demographics [19].

Population genetics

Investigators study the causes and consequences of population genetic structure. For simplic-

ity, complex biological forces such as selection and mutation rates are often assumed to be spa-

tially constant. Additionally, in classic population genetic models, spatial complexity is
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reduced to discrete populations, and migration processes are characterized by a single univari-

ate input parameter, ‘m’. These simplifications have facilitated the generation of a wealth of

theory; but, a lack of biological realism and spatial complexity have precluded the application

of this theory to systems in which space is heterogeneous and dynamic (e.g., where landscape

structure influences population size, density, dispersal flux, or local adaptation), or when gene-

flow is governed by complex movement and mating behavior (e.g., when dispersal rates and

distances are unequal, or mate-choice is non-random; see [20] for review). However, exciting

methodological advances are beginning to make estimates of population genetics structure

more spatially realistic (e.g., [21]).

Conservation biology

This broadly defined discipline frequently involves the exploration of forces affecting popula-

tion viability. Landscape pattern drives population viability through its influence on ecological

and evolutionary processes. The relative importance of demography versus genetics has been

actively debated in the conservation literature [22, 23]. Some forecasting tools can simulate

either inbreeding rates or landscape use, and incorporate them into probabilities of extinction

(e.g., RAMAS GIS [24] or Vortex [25]), but existing models simplify the linkages between eco-

logical and evolutionary processes, and these shortcomings limit the utility of their forecasts.

For example, a platform capable of simulating complex interacting demographic and genetic

traits is necessary to forecast how landscape changes will alter a population’s size and distribu-

tion (eco), while simultaneously impacting its mate-finding or natural selection (evo). Sophis-

ticated analyses of this sort have been conducted using traditional software applications, for

example see [26, 27], but methodological advancements such as those described here are

beginning to simplify these types of investigations.

Evolutionary ecology

Researchers explore interactions and feedback between ecological and evolutionary drivers

that affect demographic and genetic traits. Landscape patterns shape myriad mechanisms

through which biological forces influence population and community demo-genetic traits.

Renewed interest in these processes (e.g., [28, 29]) has underscored the need for biologically

sophisticated, mechanistic simulation platforms capable of explicitly modeling dynamic eco-

evo feedback in a spatially-realistic setting. Simply modeling how environmental change

impacts heritable traits is only half of the story; our long-term goals must also include asking

how these emergent genetic traits connect back to ecological dynamics [30, 31]. Recognition of

these concerns has led to the development of several powerful new methods and software

applications [32–35].

Below, we describe a relatively simple theoretical model designed to illustrate how the

explicit inclusion of detailed spatial patterns and biologically realistic processes might facilitate

the development of new eco-evo theory and applications. We demonstrate model relevance by

highlighting results that (a) illustrate a priori expectations of a core eco-evo dynamic funda-

mental to a discipline, and (b) illustrate how additional biological and spatial realism might

contribute to new theory and improve our confidence in modeling applications (Table 1). Our

primary goals include both evaluating and articulating the benefits derived from adding spatial

structure to genetic models, and illustrating the mechanics involved in doing this well. While

the incorporation of space can substantially enhance realism and defensibility, it also compli-

cates models, especially those which are already mechanistically-rich (e.g., that integrate

demography, movement, and gene flow). In pursuit of the former goal, we trade away elements

of realism, in the form of landscape structure and movement behavior, for mechanistic clarity.
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Readers evaluating our assertions will benefit from the simplicity of our simulations, as the

number of drivers and responses they must track is limited. In regards to the latter goal, our

work constitutes an important extension to the existing descriptions and applications of Hex-

Sim [16]. Readers interested in adopting this software will benefit from the case studies dis-

cussed here, as they provide detail on HexSim genetics that is unavailable in previous

publications.

Methods

Our study was built around a simple heuristic simulation constructed within the HexSim

modeling environment [16]. HexSim is a user-friendly, spatially-explicit, individual-based,

demo-genetic modeling environment. We modeled a single species, and parameterized its life

history, demographics, genetic traits, and the interactions between habitat type and genetics

(described below). We created a minimally-complex landscape structure that varied episodi-

cally throughout our simulations. Each epoch (1,000 simulation time steps) included unique

barriers, barrier gaps, or habitat types. We varied behavior (dispersal distance), strength of

selection, and barrier gap permeability for a total of eight treatment combinations, and tracked

individual genotypes, per-capita homozygosity, per-patch population size, and the number of

dispersers moving between the patches in each treatment. Through the use of this single

model, we were able to probe expected outcomes of the four focal disciplines, and test the

anticipated behaviors of this eco-evo modeling approach.

Landscape structure

Our landscape was composed of six adjacent habitat patches (two small, two intermediate, two

large) built up from multiple hexagonal cells of uniform quality (Fig 1). Two large adjoining

patches (1326 hexagons each) lie at the landscape center. Two medium-sized patches (200

hexagons each) and two small patches (50 hexagons each) abut the large patches, but not each

other. Patch dimensions expressed as columns × rows, were 26 × 51, 10 × 20, and 5 × 10. Col-

lectively, the six patches were assembled from 3152 individual hexagons. Our simulated indi-

viduals were never allowed to enter the surrounding non-habitat matrix. Movement barriers

were used, at times, to isolate the patches from each other. At other times, small semi-perme-

able openings in the barriers allowed limited dispersal between neighboring patches. The total

size of the barrier gaps between adjacent patches was identical, ensuring individuals had a uni-

form potential for crossing all patch interfaces.

Table 1. How spatially structured eco-evolutionary models might contribute to four focal disciplines.

Discipline Research Questions Expected Outcomes Anticipated Contributions

Landscape

Genetics

How is gene-flow controlled by the

landscape?

Isolation by Distance is a function of

dispersal behavior.

Replacing resistance surfaces and cost-distance matrices with

measures of genetic distance arising from eco-evo processes and

species-landscape interactions.

Population

Genetics

How is genetic structure controlled

by the landscape?

Genetic structure is influenced by

isolation by distance and demography.

Allowing migration rates between populations to emerge

mechanistically from the interplay between dispersal behavior

and landscape structure.

Conservation

Biology

How are inbreeding and population

viability controlled by the landscape?

Homozygosity and stochastic extinction

are consequences of demographic

processes.

Ensuring that forecasts of genetic degradation are driven by

spatially-realistic movement models and incorporate pre-

existing genetic structure and diversity.

Evolutionary

Ecology

How are feedbacks between

ecological and heritable traits

controlled by the landscape?

Population demo-genetic traits are an

ecological response to the evolutionary

force of selection.

Creating eco-evo feedback loops between local selection for

specific alleles and counteracting asymmetric migration

stemming from source-sink dynamics in heterogeneous

landscapes.

https://doi.org/10.1371/journal.pone.0282535.t001
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Individual ecological characteristics

Our simulations ran for a series of time steps, each corresponding to one year, with a sequence

of life history events and species-landscape interactions performed at each step. Note that we

subsequently use the terms "time step" and "year" synonymously. We favor "time step" when

describing model mechanics, and "year" when interpreting simulation output. In brief, the life

cycle consisted of (a) resource acquisition, (b) pair formation, (c) reproduction, (d) juvenile

dispersal, and (e) survival. The individuals making up our population included both sexes and

two age classes (juvenile and adult), and our simulations began with the landscape being satu-

rated with adults (3152 individuals spread uniformly across all patch hexagons). Adult females

reproduced only if they could pair exclusively with an adult male located nearby (neither

females or males had multiple mates). Individuals were assigned normally distributed repro-

ductive rates, with mean values based on their resource allocation, which introduced a den-

sity-dependent feedback that was further modified by the requirement for pair-formation.

Individuals acquired resources from a roughly-circular neighborhood of 37 hexagonal cells,

and resources were shared equally by all individuals attempting to utilize them (scramble com-

petition). Juveniles dispersed from their natal site in the year of their birth, and transitioned to

adults at the start of the subsequent year. Adults did not move. Dispersal path lengths were

drawn from one of two uniform distributions, either “short” (1–5 hexagon steps) or “long” (5–

25 hexagon steps). Dispersal autocorrelation was set at 75, on a scale of 0 (completely random)

to 100 (perfectly linear). Individual dispersers took a series of steps from hexagon to adjacent

hexagon, and stopped when their path length had been reached. Yearly survival probability

was based on stage class (juvenile = 0.500, adult = 0.885), but individuals with less than 20% of

their resource goal were assigned an additional 10% probability of mortality. Our simulations

included a period during which survival decisions were also based on genetic adaptation. In

these cases, emergent mortality rates became jointly determined by stage class, location, and

genotype (see below).

Individual evolutionary characteristics

Our simulated individuals were diploid with ten loci and zero linkage between loci. Each locus

was assigned five alleles labeled A1-A5. The starting population’s allele assignment was gov-

erned by locus-specific initial allele frequencies (Table 2). Initial allele frequencies were not

Fig 1. The progression of landscape epochs over 4000 simulation time steps. Movement barriers (shown as dark blue lines) and landscape edges are

reflective. The six patches are distinguished by color within the Continuous epoch. Yellow barrier gaps, introduced at time step 2001, are of the same total

length for each barrier. At time step 3001, the landscape is assigned two distinct habitat types (light blue vs. orange) that confer genotype-specific adaptive

advantage to juvenile survival.

https://doi.org/10.1371/journal.pone.0282535.g001
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spatially stratified, and we did not simulate mutation. Offspring genotypes were assembled by

drawing a single allele from each parent at each locus. Individuals possessed five purely neutral

loci (L1-L5), and five loci (L6-L10) containing at least one allele capable of conferring a fitness

advantage. These locally adaptive alleles imparted a survival benefit to juveniles when they

were in the habitat type to which they were genetically pre-adapted. The survival benefit (S)

per adaptive allele was either strong (S = 0.10) or weak (S = 0.01). Modeled this way, selection

was a predictable process because genotype dictated the mean juvenile survival probability.

Selection was initiated at time step 3000. All ten loci were utilized for all genetic analyses

described below, with the exception of adaptation, for which only L6-L10 were employed.

Progression of landscape change

All of our landscapes were binary, consisting of habitat patches embedded within a non-habi-

tat matrix. Our initial landscape was continuous and free from movement barriers. This land-

scape, hereafter referred to as Continuous, persisted for the first epoch of 1000 simulation time

steps (Fig 1). We anticipated that Isolation by Distance (IBD) would be the predominant

Table 2. Initial allele frequencies for 10-locus genotypes.

Locus Allele Initial Allele Frequency Local Adaptation

1 1–5 0.20, 0.20, 0.20, 0.20, 0.20 Neutral

2 1–5 0.30, 0.25, 0.20, 0.15, 0.10 Neutral

3 1–5 0.10, 0.15, 0.20, 0.25, 0.30 Neutral

4 1–5 0.01, 0.04, 0.15, 0.30, 0.50 Neutral

5 1–5 0.50, 0.30, 0.15, 0.04, 0.01 Neutral

6 1 0.20 Neutral

2 0.20 Locally Adapted—Habitat Type A

3 0.20 Neutral

4 0.20 Locally Adapted—Habitat Type B

5 0.20 Neutral

7 1 0.30 Neutral

2 0.25 Neutral

3 0.20 Neutral

4 0.15 Neutral

5 0.10 Locally Adapted—Habitat Type A

8 1 0.10 Neutral

2 0.15 Neutral

3 0.20 Neutral

4 0.25 Neutral

5 0.30 Locally Adapted—Habitat Type B

9 1 0.01 Locally Adapted—Habitat Type A

2 0.04 Neutral

3 0.15 Neutral

4 0.30 Neutral

5 0.50 Neutral

10 1 0.50 Locally Adapted—Habitat Type B

2 0.30 Neutral

3 0.15 Neutral

4 0.04 Neutral

5 0.01 Neutral

https://doi.org/10.1371/journal.pone.0282535.t002

PLOS ONE Eco-evo theory and applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0282535 March 9, 2023 6 / 19

https://doi.org/10.1371/journal.pone.0282535.t002
https://doi.org/10.1371/journal.pone.0282535


evolutionary force in this landscape. To simulate the effect of drift alone, we then imposed

absolute movement barriers that isolated subpopulations into six separate landscape patches

(two each, of three different sizes) for the subsequent 1000 simulation time steps. We refer to

this epoch as Isolated Patches.
Following patch isolation, we created small gaps in the movement barriers, allowing infre-

quent migration between the previously isolated sub-populations. Barrier gaps varied in per-

meability (high = 0.70 transmission probability per encounter, low = 0.02 transmission

probability per encounter), affecting the likelihood that individuals would cross the barrier

when they encountered a gap during dispersal. We refer to this third epoch of 1000 time steps

as Semi-Connected. During the final 1000 time steps, the patches were each assigned one of

two “habitat types” that conferred increased fitness to juveniles with specific genotypes. We

refer to this landscape as Semi-Connected with Local Selection.

Treatments and observable responses

Individual dispersal behavior (long vs. short), strength of selection (strong vs. weak), and bar-

rier gap permeability (low vs. high) together formed eight treatment combinations. Each treat-

ment was repeated in ten replicates. For each treatment, we tracked individual genotypes, per-

capita homozygosity, per-patch population size, and the number of dispersers moving between

the patches. We did not track individual pedigree information. Upon completion of the simu-

lations, we used HexSim’s report generator to create files suitable for input to the genetic soft-

ware package STRUCTURE [36], which we subsequently used for some of our analyses.

Adult females in our model could reproduce each time step until their death, thereby pro-

ducing overlapping generations. We measured generation time as the observed average age of

reproducing females [37]. Migration rates between patches were measured during the Semi-
Connected epoch. To qualify as a migrant, individuals had to cross through a barrier gap and

subsequently reproduce somewhere other than their natal patch. Our migration data thus

intentionally excluded non-breeders and individuals that reproduced in their natal patch after

making a temporary excursion elsewhere.

Landscape genetics

Isolation by distance (IBD) produced by dispersal limitations [38] is a core concept in land-

scape genetics. We used results from the Continuous epoch to illustrate the degree of IBD for

our short and long-distance dispersal treatment groups. We constructed dispersal kernels by

plotting the frequency of observed dispersal distances for all individuals in all replicates, from

time step 1 to 1000. We visually assessed the degree of IBD using correlograms generated by

the application Alleles in Space [39], where the average genetic distance between individuals is

plotted for varying distance classes. We also plotted the frequency of observations for each dis-

tance class, to ensure that the inter-individual genetic distances were not due to underlying

distribution of individuals on the landscape.

We calculated inter-individual genetic-distances resulting cumulatively from each land-

scape history. For ease of illustration, we subset our results as follows: for each treatment

group, we randomly selected a single replicate simulation. From the selected replicate, we

extracted genotype reports from the last time step of each of the four landscape epochs. From

those reports, we randomly selected 25 individuals from each of the six patch locations. For

those 150 individuals, we calculated a simple metric of pairwise genetic distance (number loci

for which alleles differ between individuals / total number loci) using the “ape” R (v3.2.2) pack-

age “dist.gene” function with the “percentage” method [40, 41]. We visualized the 150 x 150

pairwise genetic distances as triangular matrices.
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Population genetics

We used a Bayesian clustering method, implemented by the program STRUCTURE (v 2.3.4),

to analyze population genetic structure [36]. At the end of each landscape epoch, we collected

genotype information stratified by putative population (patch), and imported these data into

STRUCTURE. Unequal sample sizes (small patches� 25 individuals, large patches� 1000)

interfered with the assessment of the number of subpopulations and assignment probabilities.

This known limitation of the software [42] was easily overcome by randomly drawing a fixed

number of individuals (n = 25) from each patch for analysis. In cases where there were fewer

than 25 individuals extant in a given patch, genotypes were randomly selected for inclusion

more than once until each patch had a sample of 25, for 150 total individuals.

We expected the number of unique genetic clusters (commonly referred to as “K”) to vary

from 1 to 6 based on landscape structure. Therefore, following convention, we tested possible

values of K ranging from 1 to 20. All STRUCTURE analyses were run with a burn-in period of

10,000 iterations, with an additional 10,000 analysis iterations. We performed 20 replicate tri-

als for each possible K value using the default settings of the admixture model and correlated

allele frequencies. The best supported K values were identified using two methods: 1) plotting

the replicate average Ln P(D|K), and visually determining the minimum K of the curve’s

asymptote [42], and 2) using Evanno’s ΔK method [43]. When there were close ties between

supported K values from the competing methods, we considered them all for individual assign-

ment analyses.

Conservation biology

We calculated Per-capita Homozygosity as the percent of homozygous genotypes across all

alleles and individuals within a given landscape patch. Large values of Per-capita Homozygosity
could result from a few highly inbred individuals or from many slightly inbred individuals. We

also examined the effect of patch isolation on allele frequencies from data collected at the ends

of the Continuous and Isolated Patches epochs. We calculated three metrics of genetic degrada-

tion for each locus in each subpopulation using output from the “‘diveRsity” R package “divBa-
sic” function [44], as described below:

1. Allelic richness = the number of unique alleles per locus. All ten loci began with 5 alleles

each.

2. Allelic evenness =

P
pi lnðpiÞ

lnð5Þ , where pi is the frequency of the ith allele within each locus, and ln
(5) is the maximum evenness in each locus, given that all were initiated with 5 alleles. The

starting population had different initial allele frequencies corresponding to allelic evenness

values of 1.0 = “Equal”, 0.96 = “Unequal”, and 0.72 = “Rare” (Table 2).

3. Heterozygosity deficit = Hobs–Hexp, where Hobs is the number of observed heterozygous

genotypes and expected heterozygosity is calculated as: Hexp ¼ 1 �
Pn

1
ðqiÞ

2
, where n repre-

sents the number of alleles, and qi is the frequency of the ith allele at a locus. Note that Hexp

is calculated based on the number of extant alleles at a locus, and will fluctuate dramatically

as alleles are lost from a population. Therefore, unlike Allelic richness or Allelic evenness,
this metric has a shifting baseline.

For each metric, we calculated the mean and standard deviation across all replicates within

the same patch size (small, medium, or large) and of the same initial allele frequency (equal,

unequal, or rare) for each of the two time points of interest (at the end of the Continuous and

Isolated Patches epochs).
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Evolutionary ecology

Population size was tracked for each patch across all time steps to facilitate measuring the

response to adaptation. Additionally, we computed the change in frequency of adaptive alleles

within each patch during the Semi-Connected with Local Selection epoch. L6 contained two

adaptive alleles and 3 neutral, while L7-through L10 each contained one adaptive allele and 4

neutral. L6-A2, L7-A5 and L9-A1 were adaptive in half of the patches, while L6-A4, L8-A5 and

L10-A1 were adaptive in the other half. Tracking allele frequencies in L6 allowed us to examine

the effect of local adaptation on allele frequency in combination with asymmetric migration

from adjacent patches, where the opposite allele was advantageous.

Results

The age-class structure that arose from our model resulted in an average age of reproducing

females of 8.7 years. Therefore, each landscape epoch of 1000 simulation time steps (Fig 1)

spanned approximately 115 generations. During the Semi-Connected epoch, migration rate

between adjacent patches varied with dispersal distance, barrier gap permeability, and patch

size (Fig 2); but regardless of these values, the majority of individuals remained in their natal

patch. As anticipated, we observed higher migration rates when individuals were assigned the

long-distance dispersal behavior and the barrier gaps were highly permeable. Unequal perime-

ter-area ratios ensured that migration was asymmetric, with smaller patches generating pro-

portionately greater numbers of emigrants than larger patches, and larger patches receiving

proportionately higher numbers of immigrants than smaller patches.

Landscape genetics

The short and long-distance dispersal behaviors measured during the Continuous landscape

epoch produced notably different dispersal kernels (Fig 3 left). IBD was evident in the relation-

ship between geographic distance and genetic distance when dispersal was short, but not when

dispersal distances were long (Fig 3 right).
We also interpret our series of landscape epochs as four nested hypothetical landscape his-

tories: years 1–1000, years 1–2000, years 1–3000, and years 1–4000. Genetic distance matrices

Fig 2. Observed migration rates of long or short-dispersing individuals across barriers of varying permeability during the Semi-Connected epoch. Left:

Percent of the population that is born and reproduces in the same patch. Middle: Emigration rates, sorted by size of sending patch. Right: Immigration rates,

sorted by size of receiving patch.

https://doi.org/10.1371/journal.pone.0282535.g002
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observed at the conclusion of each epoch illustrate the effectiveness of gene-flow at mixing

subpopulations, given landscape history and dispersal behavior (Fig 4). Additionally, barrier

gap permeability affects gene-flow in the Semi-Connected and Semi-Connected with Local Selec-
tion epochs, and selection strength affects gene-flow in the Semi-Connected with Local Selection
epoch.

Fig 3. In a spatially-continuous landscape, the observed dispersal kernels reflected juvenile dispersal ability (left). Genetic IBD was evident when dispersal

paths were short, but not when they became longer (right). These data were gathered at the end of the Continuous landscape epoch, after 115 generations of

unobstructed movement.

https://doi.org/10.1371/journal.pone.0282535.g003

Fig 4. Modeling gene-flow for four landscape histories, beginning with IBD only, and building to a complex history of sequential epochs incorporating

IBD, drift, migration, and finally, local selection. The resulting pairwise genetic distance matrices (colored triangles) illustrate the strength of gene-flow

within a given landscape history, where increasing contrast in the geometric patterns visible within the matrices results from reduced gene-flow between

landscape patches. Data collected at time step 4000 illustrate the interacting effects of gene-flow and local adaptation on genetic-distance. See Methods section

for additional details.

https://doi.org/10.1371/journal.pone.0282535.g004
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Population genetics

In the Continuous epoch, we know a single biological population was present on the landscape.

But without the benefit, inherent in modeling, of knowing the true population dynamics,

genetic analysis could easily lead to a conclusion that several distinct populations were present

(Table 3). For example, neither Evanno’s method or L(K) produced consistent results in this

case. Short distance dispersal and the resulting IBD led to an inference of multiple genetic clus-

ters under L(K), but a single genetic cluster under E. When dispersers moved longer distances,

and IBD was therefore absent, the L(K) method produced the expected result, but Evanno’s

method did not (Table 3).

In the Isolated Patches epoch, there are 6 distinct populations isolated by absolute barriers.

By the end of the epoch, 5–8 unique genetic clusters were identified by our genetic analyses,

regardless of dispersal behavior (Table 3). Evanno’s method (E) tended to produce inflated

estimates of K that exceeded the true number of 6 genetic subpopulations. The STRUCTURE

plots (not shown) indicated clearly that the 4 smaller patches were each home to a single

genetic cluster, made unique by drift. The two large patches housed either one or two genetic

clusters, due to a weak effect of drift in these larger populations.

The population genetic structure produced by drift during the Isolated Patches epoch was

mitigated by the limited inter-patch migration that characterized the subsequent Semi-Con-
nected epoch (Table 4). The differing numbers of migrants per generation produced varying

degrees of genetic mixing over the course of these 115 generations. The observed>15 migrants

per generation resulting from long distance dispersal and high barrier gap permeability pro-

duced sufficient genetic mixing to return to panmixia, while the other treatments failed to do

so. Long-distance dispersal with low barrier permeability resulted in<1 migrant per

Table 3. Inferred number of genetic subpopulations K resulting from either the visual interpretation of likelihood

probabilities L(K) or from Evanno’s ΔK method E, as a function of dispersal distance and epoch. When a single

method produced multiple equally-supported estimates of K, then all values were included.

K Continuous Epoch Isolated Patches Epoch

Long Distance Dispersal 1 L(K)

2 E

5 L(K)

6 L(K)

8 E

Short Distance Dispersal 2 E

4 L(K)

5 L(K) L(K)

6 L(K)

7 E

https://doi.org/10.1371/journal.pone.0282535.t003

Table 4. The replicated average number of observed migrants per generation, presented as a function of dispersal distance and barrier gap permeability, at the end

of the Semi-Connected epoch. In most cases, population genetic structure (change in possible K, evaluated from either the visual interpretation of likelihood probabilities

L(K) (top) or from Evanno’s ΔK method E (bottom)) declined from where it began in the prior Isolated Patches epoch.

Low Barrier Gap Permeability High Barrier Gap Permeability

Migrants per Generation Change in Possible K Migrants per Generation Change in Possible K

Long Distance Dispersal 0.757 5 or 6! 4 15.456 5 or 6! 1

8! 6 8! 2

Short Distance Dispersal 0.086 5 or 6! 6 2.598 5 or 6! 6

7! 2 7! 2

https://doi.org/10.1371/journal.pone.0282535.t004
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generation, and this migration rate was insufficient to return the population to panmixia

within the 115 generations of the epoch. A return to panmixia by the end of the Semi-Con-
nected epoch was not expected in simulations employing a short dispersal distance, and no

such outcome was observed.

Conservation biology

In this analysis, which included only the Continuous, Isolated Patches, and Semi-Connected
epochs, per-capita homozygosity varied dramatically with landscape epoch, and fluctuated

more in the small patches than the large ones (Fig 5). While we observed little accumulation of

homozygosity during the Continuous epoch, this changed when migration between patches

was limited by dispersal barriers. During the Isolated Patches epoch, homozygosity increased

rapidly, but this general trend was strongly influenced by patch size. Both patch size and bar-

rier gap permeability affected the amount of “genetic rescue” resulting from migration during

the Semi-Connected epoch.

Changes in allele frequencies observed during the Continuous and Isolated Patches epochs

were affected by patch size, locus-specific initial allele frequencies, and dispersal distance. Even

during the Continuous epoch, prior to patch isolation, rare alleles were lost due to drift. As

anticipated, this process became more pronounced when dispersal was limited by imperme-

able barriers (the Isolated Patches epoch). The loss of allelic richness and evenness during

patch isolation was most pronounced in the small patches, and least severe in the large patches.

Short-distance dispersal also influenced loss of allelic richness and evenness in both epochs,

but only in medium and small patches. A heterozygosity deficit was observed when dispersal

distances were short, but only in large and medium patches.

Evolutionary ecology

Selection pressure was initiated at the beginning of the final landscape epoch, at time step

3000. Effective carrying capacity and population sizes emerged mechanistically from our

model. Population size was most stochastic in the smaller patches, and most stable in the large

patches (Fig 6). A nonzero probability of extinction was observed only for the small patches,

and was greatest when the dispersal distances were short and movement barriers were present.

The simulated adaptation to local conditions (time steps 3000–5000) effectively increased

patch carrying capacity. These effects of adaptation were more pronounced when selection

pressure was strong.

The frequency of the adaptive alleles at loci L7 and L10 increased globally across all subpop-

ulations as selection acted locally and migration moved the adaptive alleles across the land-

scape. However, the effect of local selection at Locus L6 was counteracted by asymmetric

migration (see Fig 2) between adjacent patches of different habitat types. In small patches,

local selection was almost always swamped by migration from the neighboring large patches,

except when selection was strong, dispersal distance was short, and gap permeability was low.

Otherwise, for the small and medium patches, the extent to which selection was swamped by

migration varied more continuously based on the strength of selection, barrier gap permeabil-

ity, and dispersal distance. In large patches, selection was often able to act effectively regardless

of selection strength or migration rate, except when selection was weak and dispersal distance

was long.

Discussion

We attempted to develop the simplest individual-based model capable of clearly illustrating

how spatial structure drives eco-evo dynamics. By imposing landscape change on otherwise
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functionally-static eco-evolutionary models, we were able to alter key emergent forces such as

gene-flow, genetic drift, and adaptive selection, as well as demo-genetic responses including

population size, probability of extinction, and allele frequencies. Our model also demonstrated

how critical demo-genetic traits, for example generation time and migration rate, can arise

from a parsimonious mechanistic model, rather than being specified a priori.

Fig 5. Per-capita homozygosity across simulation time steps spanning the Continuous, Isolated Patches, and Semi-Connected
landscape epochs, displayed by patch size. Our simulated low and high barrier crossing probabilities corresponded to P

(transmission) values of 0.02 and 0.70, respectively. Six lines per plot result from two small, two medium, and two large patches.

https://doi.org/10.1371/journal.pone.0282535.g005
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Landscape genetics

A common approach in landscape genetics is to assume that the current genetic pattern is a

result of landscape pattern (with some lag-time) represented by resistance surfaces. Hypotheti-

cal “resistance distances” between individuals are compared to actual genetic distances

between sampled individuals (or groups), and tests are performed to infer which elements in

the landscape most strongly influence gene-flow. But complex movement behavior and

dynamic landscape histories are not easily captured by resistance surfaces, and this in turn lim-

its our ability to identify causal processes and detect past gene-flow [45, 46].

We demonstrated how the cumulative effects of gene-flow, genetic drift, and selection can

be simulated over several hypothetical landscape histories. The resulting inter-individual

genetic distance matrices simultaneously captured the influences of dynamic landscape struc-

ture, dispersal behavior, and demography. Long-distance dispersal behavior tended to swamp

any effect of landscape history when landscape connectivity was high. This suggests it may be

difficult to identify past landscape discontinuities when dispersal distances are long relative to

the spatial extent of the study area.

Fig 6. Observed trends in population size stratified by patch size. Results from all ten simulation replicates are shown. Data are displayed for an additional

1000 time steps during the final landscape epoch in order to better visualize the long-term population response to selection pressure. Carrying capacity was

effectively increased by local adaptation, but the magnitude of this effect depended on the strength of selection. Extinction events can be inferred from

occasional very low population sizes observed for the small patches (note the logarithmic vertical axis).

https://doi.org/10.1371/journal.pone.0282535.g006
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Population genetics

An ongoing challenge for empirical population geneticists and phylogeneticists has been deter-

mining the number of populations via analysis of genetic clustering patterns. Our model dem-

onstrates that small amounts of IBD inflate such inferences, and that popular statistical

solutions for choosing between possible numbers of genetic clusters are prone to overestima-

tion [47].

Our approach offers population geneticists a methodology that allows migration rates to

emerge from species-landscape interactions. Our model demonstrates how a simple alteration

of barrier gap permeability can produce departures from the “one-migrant-per-generation”

theoretically-derived guideline for re-establishing genetic panmixia [48]. We observed that,

with short-distance dispersal behavior, the inference of population structure was similar when

that structure resulted from either IBD or from gene-flow following a period of isolation,

highlighting the difficulty in disentangling past genetic history from contemporary genetic

structure.

Conservation biology

Forecasting genetic degradation in small populations facing extinction is a challenging task

that should ideally acknowledge the influences of both demographic and genetic processes.

Our methodology addresses this challenge, as illustrated by two examples from our results.

First, rare alleles were lost from the small patches, even when the landscape was fully con-

nected; and the severity of this loss was more extreme when individuals dispersed short dis-

tances. Second, the loss of allelic evenness we observed exhibited different patterns depending

on patch size. In the small patches, the allelic evenness eventually approached zero, due to sin-

gle allele fixation, regardless of initial allele frequencies or dispersal distance. Conversely, in

the large patches, allelic evenness varied depending upon initial conditions, but did not vary

with dispersal distance. We observed a combined effect of dispersal distance and initial condi-

tions in the medium patches, where limiting dispersal distance increased the loss of allelic

evenness, but the steady-state depended on initial conditions. Traditional simulation

approaches would associate a single trend with any given landscape.

These findings highlight how eco-evo simulators can add realism to the forecasts of genetic

degradation used in conservation, and demonstrate how future studies might improve our

understanding of inbreeding and outbreeding depression, better explore the relative impor-

tance of genetic versus demographic components of viability, and more.

Evolutionary ecology

The HexSim modeling platform allows users to develop dynamic feedback loops linking evolu-

tionary and ecological forces. Our model captured the counteracting forces of local selection

and asymmetric migration from spatially proximal sub-populations. Adaptive alleles increased

in frequency in spatially discontinuous landscape patches due to local selection, while migra-

tion rates between patches varied by patch size, dispersal behavior, and barrier gap permeabil-

ity. The increase in adaptive alleles was most pronounced when selection was strong, yet this

effect was not observed in the small and medium-sized patches when dispersal distance was

short and barrier gap permeability was low, presumably because stochastic drift was then the

driving force. When selection was weak, asymmetric migration between the large and proxi-

mate smaller patches produced highly variable changes in the frequency of the locally adaptive

allele in the smaller patches. Even in the large patches, where in the absence of drift, selection

might be expected to act efficiently, the anticipated changes in adaptive alleles were only

observed when dispersal ability was limited and barrier gap permeability was low. The
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interplay between local selection and asymmetric migration that we found in our smaller

patches demonstrates what we might expect to see as species’ ranges shift due to climate

change.

Conclusions

Contemporary ecological theory reflects a scientific world-view heavily influenced by mathe-

matics and simulation models. But these useful abstractions only have practical value when

equations can be formulated and solved, or source code can be designed and executed; and as

is true with science in general, ecologists have made use of simplifying assumptions in order to

keep model development tractable. The cost of these simplifications has been that our theory

can lack rigorous grounding in the very biological detail that we know governs species’ interac-

tions with their environments, and with each other. Simplifying assumptions are a practical

necessity, but we should resist becoming too comfortable with them.

Our study used a two-pronged approach to examine these issues. First, we illustrated how

advanced software tools (HexSim, in our case) allow researchers to explore complex biological

mechanisms while retaining species-landscape and intraspecific interactions. Second, we

examined specific simplifying assumptions that have shaped the development of theories in

landscape genetics, population genetics, conservation biology, and evolutionary ecology. For

each discipline, we used our hypothetical model system to illustrate how renewed attention to

pattern and process can highlight the limits of existing theory. Our objective is not to find fault

in past work, but rather to improve our models by challenging the assumptions upon which

they have been constructed. To be sure, eco-evo theories of the future will extend existing

models, not discard them. And the next generation of eco-evo theory will better explain pat-

terns and processes when landscapes are spatially and temporally dynamic, species’ life histo-

ries and genetics are complex and interacting, and when the details matter.

The simulations described here are, by design, simple and straightforward. But they illus-

trate fundamental biological forces, track familiar observable responses, and address pressing

challenges in the fields of landscape genetics, population genetics, conservation biology, and

evolutionary ecology. We also expect our methods to have applications in the fields of phyloge-

netics, phylogeography, medical science, and evolutionary theory. For example, phylogeneti-

cists might simulate past species’ range shifts, model incomplete lineage sorting, or ask how

linkage affects coalescent metrics. Phylogeographers may explore the stability of admixture

zones over time, or improve the demarcation of evolutionary significant units. More generally,

future applications of our methods will benefit from the HexSim modeling platform’s ability to

incorporate dynamic geographically realistic landscapes, and to simulate real species, interac-

tions, and disturbance regimes.

While our simulations included only simple microsatellite-like genotypes, we anticipate

future projects will investigate how mode of inheritance, linkage between alleles, initial geo-

graphic distributions of allele frequencies, and multiple mutation regimes (e.g., stepwise, infi-

nite alleles, or two-phase models) interact with landscape spatial pattern and movement.

Conservation geneticists may simulate mutation rates based on exposure to spatially-distrib-

uted chemical mutagens encountered during dispersal and mitigated by selection against dele-

terious alleles. Similarly, rates and patterns of gene-flow may be investigated within the

context of nuanced, biologically-realistic movement behaviors, including rare long-distance

dispersal events, site fidelity and memory, attraction and avoidance, sex-specific behaviors, to

name a few. HexSim’s design makes all of these simulation strategies possible, and more, while

still being an ideal platform for simple models like the one explored in this study. Our method-

ology can also be extended to capture complex intermediate relationships between genotype,
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phenotype, and fitness, thus opening the door to evolutionary modeling at the level of genes,

phenotypic heritable traits, populations, or even communities.
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